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ABSTRACT

We present a rigorous mathematical solution to photometric redshift estimation and the more general
inversion problem. The challenge we address is to meaningfully constrain unknown properties of
astronomical sources based on given observables, usually multicolor photometry, with the help of a
training set that provides an empirical relation between the measurements and the desired quantities.
We establish a formalism that blurs the boundary between the traditional empirical and template-
fitting algorithms, as both are just special cases that are discussed in detail to put them in context.
The new approach enables the development of more sophisticated methods that go beyond the classic
techniques to combine their advantages. We look at the directions for further improvement in the
methodology, and examine the technical aspects of practical implementations. We show how training
sets are to be constructed and used consistently for reliable estimation.

Subject headings: galaxies: statistics — methods: statistical

1. MOTIVATION

The concept of photometric redshift estimation is over
four decades old. Since Baum (1962) the methodology
has changed only incrementally but its role in astronomy
has completely spun around. The astronomy commu-
nity originally received the idea with serious skepticism,
which, over time, thanks to a series of breakthroughs in
the field (e.g., Koo 1985; Connolly et al. 1995a), slowly
faded. Today the next generation telescopes plan to per-
form photometric observations only, and completely rely
on these kind of estimation techniques for most of their
key science projects including cosmology and large-scale
structure.

While getting ready for extracting most of our new sci-
entific knowledge from photometric measurements, we
have to examine the current limitations of the various
techniques and understand the underlying assumptions.
Essentially all currently existing implementation can be
categorized into two classes of methods: empirical esti-
mators and template fitting. Reviewing the history of
the research area is outside the scope this study; see
Weymann et al. (1999) for a rich cross section of the field
instead; now we look at the basic concepts and the differ-
ences in the traditional methodologies. Empirical meth-
ods map the relation of the observed and desired proper-
ties using a training set; e.g., piecewise linear or polyno-
mial fitting, or via other regression methods like artificial
neural nets, support vector machines, etc. Template-
fitting techniques rely on prior knowledge encoded in the
model’s spectral energy distributions (SEDs) that can
be matched to observations. Why are the current imple-
mentations of these two so different? There is no fun-
damental reason, e.g., one could generate training sets
from model templates. Why do only template-fitting al-
gorithms use photometric uncertainties and not the em-
pirical ones? Why do people estimate the redshifts inde-
pendently from other physical properties, e.g., often use
empirical redshift estimates and then template spectra
for type determination? We know these quantities are
correlated and should be dealt with in a consistent way.
The answers to these questions are usually direct con-

sequences of limitations in the models and the measure-
ments. If the model SEDs matched all the observations,
we would know everything about all the objects in the
Universe. The uncertainties would be used more often if
they provided reliable extra information.

The “Photo-Z” label currently associated with the
above methods, should gain a new meaning. We should
expect more from the codes than a single estimate per
object. The implementations need to provide the full
joint probability density functions of all desired physical
parameters, so we can develop new statistical tools that
utilize all the information available.

In this paper, we are not concerned with what observ-
ables are the best to use or which filter set is optimal
for special cases of the generalized photometric inversion
problem, which depend on the specific science cases, in-
stead we derive a probabilistic formalism to address the
common issues. In Section 2, we introduce the method-
ology and derive the formulas for determining the pho-
tometric constraints on physical properties. Section 3,
describes the traditional empirical and template-fitting
algorithms as special cases of the proposed framework,
and the advanced techniques that go beyond their lim-
its. In Section 4, we illustrate the concepts and detail
the practical aspects. Section 5 concludes our study.

Throughout the paper, we use the capital P letter for
probabilities and the lower-case p letter for probability
density functions, or PDFs for short.

2. METHODOLOGY

We start by formulating the problem as general as pos-
sible. The challenge is to constrain physical properties of
sources with some observables in a data set denoted by
Q, hereafter the query set. Since model spectra would
never be perfectly suitable for all desired parameters, one
will need a training set, T . In fact there is no reason to
demand that these data sets have the same observables.
The mapping is provided by some model, M . For exam-
ple, magnitudes of different photometric systems can be
mapped on to one another, say, UJFN observations to
ugriz (Fukugita et al. 1995) by empirical formulas. In
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general, let x be a set of observables in the training set
T that also contains extra information about the physi-
cal properties ξ, and let y denote the observables of the
query set Q. Our model is parameterized by a vector θ;

T : {xt, ξt}t∈T

Q :
{

yq

}

q∈Q

M : θ

The model M can predict the observables x and y for
a given parameter via the density p(x, y|θ, M) and has
a prior on its parameters p(θ|M). For example, one can
build models based on the Coleman, Wu & Weedman
(1980) or Bruzual & Charlot (2003) templates that can
be used to calculate the colors of sources at a given red-
shift in any particular photometric system. However, the
modeling goes beyond just estimating the values for a
given parameter, because the observational uncertainties
also enter the formula. Later on, we will discuss in de-
tails how to establish various models; for now, the above
functions are assumed to be known. Furthermore, let us
assume that the training set samples the entire space of
the observables, and discuss the selection effects later.

Our goal is to derive the probability density function
(PDF) of the physical properties ξ for a given query point
q with yq observations using our model M . This func-
tion, p(ξ|yq, M), is the solution of the generalized photo-
metric inversion problem and the subject of this section.
The next two paragraphs discuss probabilistic concepts
analogous to elements of template fitting and empirical
estimation, respectively, in the context of our probabilis-
tic formalism. Next we address the burning issues of
selection effects and feasibility.

2.1. Mapping the Observables

The first step is to make the connection between the
observables. It can be done formally by calculating the
probability density of x for the query point q. We do
this via the equality of

p(x|yq, M) =
p(x, yq|M)

p(yq|M)
(1)

where the right-hand side contains integrals of known
functions over the model’s parameter domain

p(x, yq|M) =

∫

dθ p(θ|M) p(x, yq|θ, M) (2)

and over x for the marginalization

p(yq|M) =

∫

dx p(x, yq|M) (3)

We see how this is superior to the techniques analogous
to the traditional way. The usual solution involves fit-
ting for the best-match model parameter using, for exam-
ple, maximum likelihood estimation (MLE), and accept-
ing that parameter at face value to derive the estimates.
Here, we consider all possible model parameters and add
up their contributions.

We note that the above general mapping formula is
valid in case of improper priors, too, in the sense that
the posterior is always properly normalized to unity. If
one has no prior knowledge about the model parame-
ters, and wishes to use a noninformative prior, e.g., flat
p(θ|M)=1, formally he/she is allowed to do so; see more
on the priors later on.

2.2. Physical Properties

Next we establish the relation between the observable
and the desired physical parameters. The traditional way
is to assume the properties of interest to be a function
of the observables. Some of the existing methods utilize
explicit functions such as a polynomial or piecewise lin-
ear, while others use more obscure mappings such as a
decision tree or an artificial neural net. Conceptually,
they are just assuming a fitting function

ξ = ξ̂(x) (4)

which is tuned to reproduce the elements of the training
set as best as possible. The problem with this assump-
tion is that there is no guarantee that the same x ob-
servables always correspond to the same ξ properties. In
fact, we know that degeneracies are present in most data
sets. Clearly, the above assumption is an unnecessary
restriction over the general relation of x and ξ denoted
by p(ξ|x). In other words, the traditional model is

p(ξ|x) = δ(|ξ − ξ̂(x)|) (5)

using Dirac’s δ symbol.
A better way is not to restrict the distribution arbi-

trarily to an unknown surface but to leave the formula
general. We can establish the proper relation by observ-
ing the fact that

p(ξ|x) =
p(ξ, x)

p(x)
(6)

The right-hand side is a ratio of two densities that
(both) can be estimated from the training set, e.g., using
Voronoi tessellation or kernel density estimation (KDE).

Having derived the above relation, one can compute
the final PDF of interest as the integral over the possible
observables in the training set

p(ξ|yq, M) =

∫

dx p(ξ|x) p(x|yq, M) (7)

When it is possible to accurately characterize this distri-
bution by a Gaussian function or some mixture model,
one can compress the numerical results into a few param-
eters. When the PDF is unimodal, which is often not the
case, the expectation value should suffice for an estimate

ξ̄(yq) =

∫

dξ ξ p(ξ|yq, M) (8)

The above equation is similar to kernel regression
(Nadaraya 1964) in case of using KDE, except it is a gen-
eralization to incorporate the uncertainties in the data
sets.

Photometric redshifts and other such properties are of-
ten used in statistical studies for their availability for a
large number of sources, even though they provide rel-
atively loose constraints on individual objects. The full
PDFs of the sources are best suited to derive the en-
semble properties of entire catalogs or even specific sub-
samples. The distribution of the properties over a set of
measurements Q is given by the average

p(ξ|Q, M) =
〈

p(ξ|yq, M)
〉

q∈Q
(9)

Hence there is no need for an extra deconvolution step
to recover the underlying distribution of the objects in
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a sample, because their average PDF is exactly that. A
common example is the estimation of the redshift dis-
tribution dN/dz for various subsamples, say, at differ-
ent distances. When selection bias is not an issue for
the scientific analysis, e.g., lensing studies, one can even
choose the subsets to optimize the contrast of the aver-
aged PDFs.

2.3. Selection Effects

The inherent limitations of a finite training set pose
a serious problem for any estimator, which is often ne-
glected. Our formalism introduced earlier is no excep-
tion, hence we now turn to examine the effects. The
selection function is the probability of a source, with ob-
servables x making it into the training set, P (T |x). The
region that the training set can sample is the window
function P (W |x), which takes the value of 1 where the
selection function is nonzero, and 0 otherwise. For ex-
ample,

P (W |x) =

{

1 if V(x) < 22
0 otherwise

(10)

for a survey that has a magnitude limit of 22 in a V band.
The selection function is expected to enter our method

at two separate places: the marginalization over x and
via the density estimates used for the relation p(ξ|x).
The former appears to be inevitable but causes problems
only at the boundaries of the selection criteria. If the
integrand p(x|yq, M) in equation (7) vanishes within the
integration domain of the window function P (W |x), the
results are valid. Otherwise the estimated PDF is biased
in an unknown way. The probability of q being inside
the window function is the right indicator of the problem
occurring

P (W |yq, M) =

∫

dx P (W |x) p(x|yq, M) (11)

When this probability is close to 1, the training set pro-
vides good support for the photometric inversion prob-
lem, but when the value is low, the query point is known
to be outside the regime of the training set.

The relation between the desired properties and the
observables is the other issue as it is only probed on the
training set. The relation as seen on the training set
depends on the true relation and the selection function
via the equation

p(ξ|x, T ) =
p(ξ|x)P (T |x, ξ)

P (T |x)
(12)

If the selection function strictly depends only on x, we
have P (T |x, ξ) = P (T |x) and find that the empirical re-
lation is identical to the true one on the selection domain.
If the sampling frequency is low, the measured relation
is noisier and less robust numerically.

This is a critical point, which is worth emphasizing
once again: the p(ξ|x, T ) = p(ξ|x) equality holds only if
ξ does not influence the selection in any way, not even in-
directly via some hidden parameter. A counter example
is the common case of cutting on morphological parame-
ters in the selection function, while only considering the
fluxes for x. Another interesting consequence is that one
cannot use only the colors to estimate, say, photometric
redshifts, if a magnitude cut was involved in the selection

of the training set. Yet another issue is cosmic variance,
which might cause the relation to depend on the posi-
tion in the sky. The solution in all cases is to revise the
selection of the training set, if possible, or to add the hid-
den observables into x, and extend the model to include
them.

3. MODELS IN THE TRADITIONAL LIMITS AND BEYOND

Previously we have hinted at how models can be con-
structed but, until now, they have just been assumed to
be known. A model is a combination of the limitations
in our observations, both in the training and query sets,
and the parameterization of the observables. From dis-
cussing the topic in the most general way, we now turn to
the practicalities of real-life astronomical observations.

Today the errors of extracted fluxes of photometric
measurements are independent estimates of the uncer-
tainties in the separate passbands. Typically, Gaussian
errors are assumed, and the catalogs would quote 1σ val-
ues for every source. Analyzing the repeated observa-
tions in the Sloan Digital Sky Survey (SDSS; York et al.
2000), Scranton et al. (2005) have shown that this sim-
ple picture is wrong, and the off-diagonal elements of the
covariance matrix are significant. This is not surprising.
One of the major components in the photometric uncer-
tainty is the error in the determination of the aperture.
If the multicolor measurements share a common aper-
ture, e.g., SDSS model magnitudes that are best suited
for colors, the flux measurements will be inevitably cor-
related. Thus an improved error model of the photomet-
ric observations is described by a multivariate normal
distribution, N(x|x̄,Cx), with a mean of x̄ and covari-
ance matrix Cx. The next generation survey telescopes
that plan to visit the sources on multiple occasions will
be able to better determine the full covariance matrices
from actual observations to improve our understanding
of the errors. Hence, for now it is general enough to
consider error estimates that are fully described by the
covariances.

In this reasonable approximation, the p(x, y|θ, M)
mapping is also a normal distribution with a full covari-
ance matrix that includes cross-catalog terms, if neces-
sary, that go beyond the calibration work on the indi-
vidual catalogs. If the apertures are locked together for
better color determination, one has to obtain the de-
pendencies via a data set that contains sources with all
x and y measurements. However, when the processing
pipelines are independent, one can assume that the un-
certainties in x and y are also independent, and write a
realistic M as the product of the two Gaussians:

p(x, y|θ, M)=Nx (x|x̄(θ),Cx(θ))

×Ny (y|ȳ(θ),Cy(θ)) (13)

The dependences in the means x̄(θ) and ȳ(θ) are
straightforward to model and, even in the most com-
plicated case, are similar, in spirit, to the traditional
template-fitting procedures. For example, when consid-
ering a synthetic model of galaxies, one has to vary the
redshift, age, optical depth, and so on, to derive high-
resolution model spectra for different parameters, and
then convolve them with the broadband filters to get the
fluxes.

Clearly modeling the covariance matrices is more com-
plicated and would require many more parameters to
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model accurately. If θ is a minimal set of parameters
that is enough to describe x̄(θ) and ȳ(θ), there are some
other hidden parameters or hyperparameters that are
also needed for the covariances. The fully Bayesian way
is to establish the relation of the covariance matrix and
the hyperparameters along with a hyperprior (the prior
on the hyperparameters), and to marginalize over the ex-
tra dependence. Even though, this relation between the
elements of the covariance matrix and the observables
could, in principle, be modeled based on the catalogs, it
may prove impractical. The empirical Bayes approach,
admittedly more optimistic but easily quantifiable, is to
find the most likely hyperparameter and substitute it into
the dependence. In practice, for every parameter θ, one
can find the values of x̄(θ) and ȳ(θ) and the closest mea-
surement points, whose covariance matrices are good es-
timates. If the covariance matrix changes slowly with
x compared to its widths, one can safely calculate the
values at the catalog points by using the corresponding
error matrices,

p(xt, yq|θ, M)=Nx (xt|x̄(θ),Ct)

×Ny

(

yq|ȳ(θ),Cq

)

(14)

The only concern with this approximation is the noise
on the elements of the covariance. If needed, one could
improve on the stability by smoothing or fitting locally
over the catalog entries.

The consequences of the model approximation in equa-
tion (14) are most intriguing from the implementation
aspect of the methodology. As long as we only evalu-
ate the PDFs at the observed locations, the calculations
are more straightforward and computationally less ex-
pensive.

3.1. Numerical Evaluation

The field of numerical evaluation of complicated mul-
tidimensional integrals that usually emerge in Bayesian
analysis such as ours is well studied. The solution typ-
ically involves some randomized algorithms that range
from simple direct sampling from the prior to adap-
tive strategies often based on Markov chain Monte Carlo
(MCMC) methods, e.g., Gibbs sampling. Although this
topic is beyond the scope of the present discussion, we
briefly touch on the basic idea to illustrate the concepts
and provide some insight on how to derive the final re-
sults numerically, namely the value of P (W |yq, M) and
the function p(ξ|yq, M).

The clever construction of the chain in the MCMC al-
gorithm yields model parameters {θi} that can be con-
sidered independent random realization drawn from the
posterior distribution, p(θ|yq, M) in our case. With the
chain in hand, one can readily approximate the integral
by the average over the MCMC samples. The mapping
of the observables then becomes

p(x|yq, M) =
〈

Nx (x|x̄(θi),Ct)
〉

(15)

where t is the index of the training point xt closest to
x̄(θi). When the query point is well within the regime
of the training set, this approximation is valid. What
happens otherwise? Often the uncertainties are larger
outside the selection criteria, e.g., the photometric er-
rors beyond the flux limit. By using the covariance
matrix of the closest training point, one actually arti-
ficially decreases the contribution to the integral making

p(x|yq, M) tighter. While the accuracy of the calculation
is affected, the change is such that it reduces the value
of the integral in P (W |yq, M), which is the measure of
reliability. Hence, if we measure a large value, we can be
confident of the result. Having said that we note that
in practice the covariances probably do not change fast
enough to pose a significant problem in this calculation
for the objects along the edge of the selection function,
and farther away the probabilities are very small anyway.

Once we know that the estimation is in the safe regime,
we can compute the p(ξ|yq, M) integral ignoring the win-
dow function completely by summing up at preset ξr

points in our region of interest, e.g., a fine redshift grid,
as

p(ξr|yq, T, M) ∝
∑

t∈T

p(ξr|xt, T )
p(xt|yq, M)

p(xt|T )
(16)

where the p(xt|T ) densities and the matrix p(ξr|xt, T )
are obtained from the numerical density estimates once
for the training set; see equation (6). Here, we made use
of the fact that the {xt} points are (naturally) drawn
from the distribution p(x|T ).

In order to perform these summations efficiently for
many query points, one has to utilize fast searching mech-
anisms in the space of the observables. The situation is
complicated by the strong correlation in the observables
and the varying Mahalanobis metric, yet, a significant
speedup can be achieved by adequate multidimensional
indexing of the color–space as described in Csabai et al.
(2007).

3.2. Template Fitting

In classical SED-fitting approaches, one does not tech-
nically have a training set. Although, formally it can
be generated from a grid of model parameters {θt} as
{xt, ξt} = {x̄(θt), ξ̄(θt)}, where ξ̄(θ) is often simply a
subset of θ, e.g., the redshift is just one of the parame-
ters in the models of SEDs. Traditionally, this artificial
training set has no errors associated with the reference
points, hence we have

p(x|θ, M) = δ(|x − x̄(θ)|) (17)

and, assuming x̄(θ) has an inverse,

p(ξ|xt, M) = δ(|ξ − ξt|) (18)

The analytical calculation yields an intuitive result,
where the grid points are weighted by their likelihood
multiplied by the corresponding prior

p(ξ|yq, M) ∝
∑

t∈T

δ(|ξ−ξt|) p(θt|M)N
(

yq|ȳ(θt),Cq

)

(19)
In the limit of a flat prior, this is the classic MLE case,
which is equivalent to the χ2 minimization techniques
used in most SED-fitting implementations today, where
the measurements are compared to the simulated obser-
vations at the grid points to select the optimum. One ob-
vious exception is the algorithm of Beńıtez (2000), which
actually applies an explicit empirical redshift prior in this
equation, hence it is often referred to as “Bayesian.”

The selection of a set of templates is another simple
prior but on the spectral type, even if well hidden, im-
plicit, and not often admitted. Researchers routinely
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seek for templates that provide the best redshift esti-
mates. Strictly speaking, this is cheating. The selection
should be based on how well the templates represent the
data in the space of the observables, and not based on
their performance in the estimation. Naturally, there
is a connection, but not in that direction. The tem-
plates that follow the data will likely provide better esti-
mates; however, templates that yield good estimates are
not guaranteed to match the data. The development
of a class of methods by Budavári et al. (1999, 2000,
2001) and Csabai et al. (2000) can be considered early
attempts to achieve a better SED prior. Here, the tem-
plates are statistically modified to represent the obser-
vations more accurately, while not optimized for redshift
estimation whatsoever. Clearly, these are just the first
steps in this direction. Instead of just assigning 1 and
0 weights to the templates by either including them or
not (respectively) as typically done today, one can explic-
itly formalize more realistic priors over a broader range
of SEDs that are driven by scientific knowledge and/or
ensemble statistics.

An obvious but rather important improvement in the
new framework is the ability to naturally introduce and
utilize the uncertainties of the template spectra. We
know that the models are not perfect, and this can be eas-
ily characterized. As an example, one can use the same
prescription for the spectral synthesis, but build on a
various stellar libraries to analyze the differences. When
using empirical templates, the implementation is even
more evident. We fold in the uncertainties by abandon-
ing the simplified relation in equation (17) and creating
a more realistic model with the estimated finite errors.

3.3. Empirical Method

The new methodology in the limit of the classic em-
pirical algorithms goes well beyond the usual techniques,
which consist of simply establishing the fitting function
in equation (4). We can utilize those fits (or preferably
estimate the densities numerically to map the full rela-
tion), but we can also properly consider the uncertainties.

The parameterization of a minimalist model is done
by a position in the space of the observables, i.e., θ is
the same type of quantity as x and y, e.g., UBVI fluxes.
Namely, we choose x̄(θ) = θ and ȳ(θ) = θ. Even though
the observables in x and y are the same quantities, the
mapping is still required to fold in the photometric errors.
With an improper flat prior p(θ|M) = 1, the mapping of
the observables is integrated analytically

p(xt|yq, M) =

∫

dθ N(xt|θ,Ct)N(θ|yq,Cq) (20)

While this model is clearly very simple, it is quite pow-
erful and conceptually more sound than a number of tra-
ditional methods. We will use it for illustrations in the
upcoming discussions.

Other simple forms of priors can also be handled ana-
lytically, e.g., linear and Gaussian, that may be reason-
able approximations at least locally. Otherwise we resort
to the numerical evaluation.

3.4. Advanced Methods of the Future

The problem with the classic empirical methods is the
requirement of having the same set of observables for

both the training and the query sets. The limitations of
the SED-fitting techniques come from the fact that the
models cannot perfectly describe the relation of observ-
ables and the physical properties.

In the realm of our unified framework, we can have
more advanced methods that combine these two previ-
ously separate classes of techniques. We can introduce
new algorithms to take advantage of the training points
even if their photometric observables differ from those
in the query set. The idea is the following: True to the
spirit of empirical methods, we utilize the training set to
provide the relation between the physical properties we
wish to constrain and some observables; see equation (6).
In addition to this empirical relation, we apply a map-
ping from the observables of the query set to that of the
training set based on SED modeling, like in the tem-
plate fitting procedures. For example, if the training set
contains UJFN magnitudes, one can map them to ugriz
using equation (1).

The intriguing observation to make here is that one
does not even need realistic physical models to start with,
because the physics is in the training set and not the
model. Let us consider a model M , which is a complete
basis on the observed wavelength range, e.g., Legendre
polynomials or Fourier series with the parameterization
by their coefficients. The manifold of the physical spec-
tra is naturally contained within. In practice, this model
needs to be only sufficiently complete and band-limited
so that real SEDs can be well described; this is a weak
prior that we can set up based on all the spectra we
observed and simulated before. A model spectrum cor-
responding to a certain parameter value in M can be
convolved with the appropriate transmission curves to
yield the observables x̄(θ) and ȳ(θ), even if they are un-
physical. Hence, formally we have the basis of our map-
ping, p(x, y|θ, M). As long as the data provide good
enough constraints on the model parameters, the map-
ping is valid and the algorithm follows the routine. When
the observations barely constrain the model parameters
and large volumes of unphysical SEDs have significant
likelihood, the mapping will be wrong. The solution is
to apply a prior to consider only the physical SEDs. Us-
ing the entire catalog, one can derive an empirical phys-
ical prior statistically, which we will discuss in the next
section.

These new advanced methods overcome the usual dif-
ficulties in photometric redshift estimation, and offer a
way out of the half-century-old dilemma. They are a
natural extension of everything that has worked before
in the field: a straightforward combination of the two
previously separate methodologies.

4. DISCUSSION

Next we demonstrate the new framework in action by
applying a simple model to real-life data, which is fol-
lowed by discussions of the qualities of training sets and
the prior.

4.1. A Case Study

To illustrate the concepts introduced earlier, we ap-
ply the aforementioned minimalist empirical model to
a sample of galaxies. We choose SDSS sources for
their well-studied photometric uncertainties. Following
Scranton et al. (2005), we estimate the full covariance
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Fig. 1.— The probability density as a function of the redshift for early- and late-type galaxies (upper and lower panels, respectively) at
different distances marked by the vertical dashed lines. For every object, the dotted line shows the empirical relation of p(z|x = mq), and
the solid line illustrates the final result of p(z|y = mq, M) after properly folding in the photometric uncertainties via the mapping in the
model.

matrix for all objects, and utilize them in the subse-
quent analysis. We randomly select a quarter of the en-
tire Main Galaxy Sample (MGS; Strauss et al. 2002) of
DR6 to be the training set, roughly 100 thousand ob-
jects. Our query set is a smaller disjoint random subset
for illustration purposes. First, we map the observables
(magnitudes to magnitudes) analytically using our sim-
ple model in equation (20). The calculation is done inside
the DR6 database by SQL User-Defined Functions.

Next, we compute the conditional PDFs by a dual-tree
KDE implementation (Gray & Moore 2003; Lee & Gray
2006) at preset locations defined by the T training and
Q query sets in magnitude space and a uniform high-
resolution redshift grid. The practical complication
with any density estimation is the fact that it is scale-
dependent and changes with the metric. We are further
limited in our applications to fix bandwidths for the con-
ditional density estimation in the current implementation
of the estimator. We adopt a bandwidth of h = 0.004 in
a metric that scales the magnitudes to the redshift. In
other words, the resolution in redshift space is set by h,
the full width half maximum of the normal distributions,
and we re-scale the magnitudes by a factor of f = 0.08 to
reasonably match the density of the sources in the sep-
arate subspaces. This simple technique is expected per-
form reasonably well within the regime where the sources
are suitably dense but not in the outskirts where a larger
variable bandwidth is needed in magnitude space. The
theory of more sophisticated conditional density estima-
tion is well-studied (e.g., Fan et al. 1996), and advanced
adaptive implementations are in the works to help out
(Lee & Gray, 2008; private communication).

Figure 1 illustrates the nature of the x−ξ rela-
tion, in this case the multicolor measurements and red-
shift p(z|mq), as well as the final redshift distribution,

p(z|mq, M), incorporating the photometric uncertainties
in our model. We see that the redshift is really not a sim-
ple function of the magnitudes but rather a more general
relation. This is even more so for observables that con-
strain the physical properties less than the ugriz mea-
surements. The relation itself (shown as a dotted line)
might provide an overly optimistic view of the uncer-
tainties at times and usually much noisier than the final
PDF (shown in solid) that sums up these relations with
appropriate weights. The top panels show intrinsically
red galaxies at three different redshifts, which were se-
lected based on the mixing angle of the first two principal
components, also known as the eClass in the SDSS ter-
minology. The bottom panels show the more problem-
atic blue galaxies at similar redshifts. Note the consis-
tent performance of the estimator on the red sources as a
function redshift in comparison to the blue galaxies that
have broader PDFs at higher redshifts and are noisier,
especially at the largest distances.

In the bottom rightmost panel, the distribution is
not even centered around the spectroscopic redshift, but
skewed toward lower values. This object is very close to
the edge of the training set, and the result would be con-
sidered unreliable due to the lack of calibrators at higher
redshift that would still be within the sources photomet-
ric uncertainties.

4.2. Sampling Frequency

A very attractive feature of the new PDF estimator
derived earlier in equation (8) is its conceptual indepen-
dence from the sampling of the calibrators. Many statis-
tical tools rely heavily on having a representative training
set and only provide unbiased results in that limit. In our
case, the training points simply provide locations where
the evaluation is feasible and their density is essentially
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Fig. 2.— Results obtained from the stratified training set look much like the those from the full sample, which shows that the
representativeness does not matter; instead the training sets should be optimized for the broad coverage of the observable volume with
highest sampling rates in the outskirts.

just a resolution factor. The sampling frequency of the
training set only affects the accuracy of the numerical
integral in equation (16) but not in a systematic way as
long as the query point is well within the boundaries of
the window function. A denser training set will provide
higher resolution in the summation, but there is a practi-
cal limit beyond which one expects no improvement. The
reason is that the new calibrator sources are essentially
identical to the ones already in the training set.

The number of spectroscopic measurements to be car-
ried out for calibration purposes is limited by finite re-
sources. It is vital to acquire reliable training sets for the
new generation photometric studies. A good training set
has a well-defined selection function, using criteria based
on only the observables one plans to model for the es-
timation, and, within that, a smart adaptive sampling
strategy to optimize the coverage in observable space.
Clearly, the densest regions can be subsampled, but one
needs all training points in the outskirts of the manifold
for broad support. For this reason, the simplest random
subsampling of the underlying population will not suffice.
Instead, a stratified sampling strategy is to be pursued.

To demonstrate that the methodology is robust to this
kind of systematic changes in the training set, we create
a stratified subset and perform the previous analysis the
same way. The sampling is done by including sources
randomly based on their local density p(x|T ) in magni-
tude space. A galaxy is included in the training set only
if the ratio of some constant p0 and the local density is
larger than a randomly generated real number, U01, uni-
form between 0 and 1, i.e., p0/p(x|T ) > U01. We set the
value of p0 to yield a subsample that is half the size of the
original data set. Figure 2 shows the results for the pre-
viously selected sources based on the smaller stratified
subset. The basic shape of the curves is practically the

same in most cases, only somewhat noisier but without
systematics. One exception is the blue galaxy at around
z = 0.1, where the subsampling somewhat amplifies the
effect of the large wall in SDSS at z = 0.08. The blue
galaxy at the highest redshift is essentially unchanged
(except for the part at the lowest redshift where the den-
sity in magnitude space is larger to start with) because
the stratified sampling (by construction) has no effect on
its already very sparse neighborhood.

Optimal sampling is difficult to achieve. In fact, it is
difficult even to define. In addition to the photometric
uncertainties, the desired resolution of the physical quan-
tities also sets limits on the sampling frequency. This is
prominent in the case of degenerate regions where an ex-
tended part of the physical parameter space is cramped
into a small volume of observables. Simulations built on
realistic SED models can help cross-check these factors,
and evaluate the performance of the estimator ahead
of time. In the ideal case, one would create stratified
training sets in the space of the physical parameters in-
stead of the observables, which should be more feasible
in the near future with improved spectral modeling (e.g.,
Charlot & Bruzual 2009).

4.3. Empirical Priors

The distribution of sources in a training set may be
artificial and, as we just argued, should be optimized for
coverage with a practical upper bound on the density
tuned to the photometric inaccuracies and source diver-
sity. However, the distribution in the query set is often
physical and can be used to derive an empirical prior
for our model. The basic observation is that the density
of sources in the query set, p(y|Q), should match the
predicted density of the model, p(y|M). The latter is
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calculated for any prior as the convolution,

p(y|M) =

∫

dθ p(y|θ, M) p(θ|M) (21)

If we substitute p(y|Q) measured from the sources on the
left-hand side of the equation, the only unknown is the
prior, which we can solve for using the elegant deconvo-
lution technique of Richardson (1972) and Lucy (1974).

To see why a physically sensible prior is important,
let us consider the density of sources in the training set
within the window function. Since the density is propor-
tional to the product of the underlying p(x) density and
the selection function,

p(x|T ) ∝ p(x)P (T |x) (22)

a significant volume of the window function is not sam-
pled by the training set, where p(x) is zero. Without
a reasonable prior, the mapping p(x|yq, M) could yield
wrong weights for unphysical observables in the summa-
tion of equation (7). Hence, any model needs some physi-
cal information. Even if one is hesitant to take the empir-
ical prior at face value, the domain of the model param-
eters should be carefully considered. In case of template
fitting, this happens implicitly, even if not optimally, via
the selection of the set or manifold of template spectra,
but can be also done for even the empirical algorithms.

5. CONCLUSIONS

Starting from first principles of Bayesian probability
theory, we built a description and obtained the solution
of the generic photometric inversion problem, where the
physical properties of sources are constrained based on
observational measurements. The new approach yields a
formalism that encapsulates the field of photometric red-
shift estimation, and contains the traditional methods as
special cases. In our systematic analysis of the mathe-
matical problem, we put previous techniques in context
and pointed out the directions for improvement in each.

The proposed extensions to the current methods rep-
resent significant progress in more respects. We avoid
the common assumption of the physical properties being
a single-valued function of the observables by treating
their relation in a more general way. Thus the formalism
is not prone to fail in regions, where the data sets are
degenerate. We showed how to estimate the correspond-
ing probability density of this relation. In addition, the
uncertainties of the observables are propagated all the
way to the results via explicit modeling of the accura-
cies. We discussed various aspects of the modeling from
the simplest empirical case to the application of SEDs.

This general framework allows for the construction
of novel, more advanced methods that combine the at-

tractive qualities of empirical and template-fitting algo-
rithms. One can build empirical estimators based on
training sets that have different observables from the
query set, e.g., UJFN photometry to ugriz, via SED
modeling. We can improve the methods by creating
more and more realistic models that include, for example,
the strengths of the emission lines in galaxies (following
Győry et al. 2009) and their inclination angles (based on
Yip et al. 2009) among the model parameters to prop-
erly marginalize over the nuance parameters for a more
reliable mapping of the observables.

The current limitations come from the lack of good
understanding of the photometric uncertainties. From
previous studies, we know that the flux measurements
in various passbands are correlated, yet, most catalogs
only quote errors on the individual fluxes. For more
precise scientific measurements via tighter photometric
constraints, we need better photometric error models in
the future. Upcoming survey telescopes will observe all
sources multiple times, hence will be able to get a bet-
ter handle on the errors and their covariances. Under-
stadning these systematics is probably one of the highest
priority tasks in the preparation for the upcoming era of
photometric science.

The proper solution of the generalized photometric in-
version problem may be straightforward on paper, but ef-
ficient implementations of realistic models with appropri-
ate priors involve many advanced concepts in statistics,
and can only be built on the most recent and on-going de-
velopments in computer science, e.g., multi-dimensional
indexing in databases. Even then the computations are
not trivial to carry out, and have significantly higher de-
mand for compute power than previous methods. The
immediate future work is to have such a unified frame-
work developed and ready for the next generation imag-
ing surveys.
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D., Budavári, T., Brinkman, J., & Fukugita, M. 2005,
arXiv:astro-ph/0508564

Strauss, M.A., et al. 2002, AJ, 124, 1810
Weymann, R. J., Storrie–Lombardi, L. J., Sawicki, M., & Brunner,

R., (ed.) 1999, in ASP Conf. Proc., Photometric Redshifts and
High–Redshift Galaxies (San Francisco, CA: ASP)

Yip, C.-W., et al., 2009, in preparation
York, D.G., et al. 2000, AJ, 120, 1579

http://arXiv.org/abs/astro-ph/0508564

